
Computers in Industry 21 (1993) 1-10 1
Elsevier

Knowledge Engineering

Configuration of complex products
M.J. E u w e a and R.V. S chuwer b

"Anderson Consulting, Eindhot,en, Netherlands
~ Faculty of Industrial Engineering and Management Science, Eindhoven Uniuersity of Technology, Eindhot:en, Netherlands

Received April 16, 1992; accepted June 26, 1992

Making a configuration of a complex product in the course of
a sales process is a difficult matter. A sales-support informa-
tion system (SSIS) can be a useful help for salesmen. An SSIS
should give support in two problem areas. The first area
concerns the problem of getting a ualid product specification,
i.e. a specification of a product which falls within the product
assortment. The second area concerns the problem of getting
the product that is the best solution for the problem of the
customer. Such an SSIS must be able to communicate in three
different languages. These languages are called user-lan-
guage, functional language and technical language. In this
p a p e r tile problem of specifying a product in technical lan-
guage is treated. With the building of a prototype of such an
SSIS it is demonstra ted that it is possible to give a salesman
sufficient support for the problem of getting a valid product
specification. The proposed solution for the second problem
area has not been processed into the prototype.

Keywords: Configuration; Configuration system; Sales proc-
ess; Knowledge-base system

1. Introduction and problem statement

A great number of industrial products can be
assembled out of a number of components, where
one out of various options needs to be selected
for each component. The end product is so to
speak the "sum" of several components. Specifi-
cation of the product is mainly the specification
of each of the components. Examples of such
products are computer systems, medical test sys-

Correspondence to." It. drs. R.V. Schuwer, Eindhoven Univer-
sity of Technology, T U E / T B D K / I & T , Den Dolech 2, P.O.
Box 513, 5600 MB Eindhoven, The Netherlands.

tems, kitchens, trucks etc. When buying such a
product, a customer can select the options which
give him a product that best fulfils his specific
demands.

In the remainder of this paper the following
terminology will be used. The components out of
which a product is assembled are called features.
For each feature one or more choices can be
made. Such a choice for a feature is called an
option. A uariant (or product variant) is a combi-
nation of selected options which is allowed and
which forms a complete product. In general, not
all combinations of options are allowed in a prod-
uct. The rules which denote which combinations
of options are obliged and which combinations
are forbidden are called restrictions. Three differ-
ent kinds of restrictions can be distinguished: An
exclusion denotes a forbidden combination of two
or more options within a product specification.
An inclusion denotes an obliged combination of
two sets of options. That is, when one set of
options is chosen, the other set must be chosen as
well (but not necessarily the other way round). A
coupling denotes two or more sets of options
which must always be chosen together (A cou-
pling can easily be denoted by several inclusions.
For reasons of overview and compactness this
kind of restriction is introduced.). In spite of
these restrictions the number of possible variants
of a product can often be large in the case of
industrial products. A generic product specifica-
tion is the combination of the set of features and
options and its corresponding restrictions describ-
ing a whole range of possible products [1]. Figure

0166-3615/93/$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

2 Knowledge Engineering (iomputers in lndusto'

FEATURE OPTION

CPU 8086 80286 80386

Co-processor 8087 80287 80387

Memory 640K 2M 4M 8M

Exclusion:

RESTRICTIONS

IF CPU(80286) THEN NOT Memory(8M)

Inclusion: IF Co-processor(8087) THEN CPU(8086)

Coupling: CPU(8086) IF AND ONLY IF Memory(640K)

IBM-compatible PC

Fig. 1. Example of a generic product specification.

1 gives an example of a generic product specifica-
tion for a PC.

1.1. Prob lem area

Because of the enormous number of variants it
may be very difficult during the selling process to
determine the variant which is most suited for the
customer. For all types of products it is known
out of which options for which features a choice
has to be made. The decision not to choose a
certain feature can be one of the options. As
soon as options have been selected for all fea-
tures the product is completely specified. In the

process of selecting options two difficulties can
be distinguished:

(i) Because of the restrictions not all combina-
tions of options are allowed. This is the problem
of getting a L, alid product specification. A valid
specification is a specification, which meets the
restrictions with respect to the possibilities of
combining options. Because of the great number
of possible combinations of options it is very
difficult for a salesman to combine those options
correctly. Therefore he might end up with an
order for a product which cannot be assembled,
due to some overlooked restrictions.

(ii) During the selection of options the re-

Mark Euwe holds a Bachelors degree
in Computer Science from Venlo In-
stitute for Technology and a Masters
degree in Industrial Engineering and
Management Science from Eind-
hoven University of Technology. He
is currently working as a management
consultant for Andersen Consulting
(Eindhoven, The Netherlands) and
specializes in the fields of production
control and logistics.

Robert Schuwer received his Masters
degree in Mathematics at the Catholic
University of Nijmegen and his MSc
in Computing Science at the Eind-
hoven University of Technology. He
is now working as an assistant profes-
sor at the Faculty of Industrial Engi-
neering and Management Science at
the Eindhoven University of Technol-
ogy. His current research interests are
applications of knowledge-base sys-
tems and the added value that can be
gained in using them.

Computers in Industry M.J. Euwe, R. H Schuwer / (kmfiguration of complex products 3

quirements of the customer must be taken into
account. The relations between those require-
ments and the options can be very complex. Most
of the time the customer will formulate his re-
quirements in terms of characteristics of use. At
the end the variant must be specified in charac-
teristics of the product, i.e. in features and op-
tions. The salesman must translate between those
two different sets of characteristics. In this pro-
cess he will rely on his experience. This gives rise
to the possibility that, because of a lack of knowl-
edge of the salesman, the customer will buy a
product which does not fully conform to his re-
quirements. This can lead to dissatisfaction with
the customer so that in the future the customer
will go to a competitor. It can also lead to higher
costs of guarantee, because the product may be
used for applications for which it is not com-
pletely suited.

A sales-support information system (SSIS)
should support the salesman and the customer
during the process of selecting options in both
problem areas. In this paper a research of the
feasibility of such an SSIS is described. First a
sketch of an SSIS is given. From this sketch an
implementation of a prototype SSIS has been
made to validate the feasibility of such an SSIS.
At the end of this paper the experiences with this
prototype are described.

2. Reflection of a sales dialogue

The customer considers buying a product as
searching for a solution for a problem within his
organization. The goal of a sales dialogue is to
offer the customer the right solution. What is
"r ight" depends on the problem of the customer.
The possible solutions are described in terms of
features and options. The problem of the cus-
tomer is not formally described, but exists only in
the mind of the customer. Therefore there has to
be an exchange of information between the cus-
tomer and the salesman to determine the right
solution. A closer look will learn, that there are
three different levels on which a customer may
specify his requirements:

(i) The customer specifies his problem by stat-
ing the use (the why and the how) of the product.
The language in which this specification is made
is defined user-language. The salesman translates

parts of the problem into certain parts of the
solution (i.e. specific options). In the case of
selling a kitchen the customer can state that the
family exists of two persons who both have a
full-time job. The salesman translates this piece
of information into the option "microwave com-
bination oven" of the feature "oven".

(ii) The customer knows which functional re-
quirements result from his problem and states
those requirements. The language in which func-
tional requirements are expressed is defined
functional language. The salesman translates those
requirements into a part of the solution (i.e.
specific options). In the case of selling a kitchen
the customer realizes that, with both persons
having a full-time job, there is a need to quickly
warm up meals. The customer tells the salesman
that the oven must be able to warm up meals
quickly. The salesman translates this piece of
information into the option "microwave combina-
tion oven" of the feature "oven".

(iii) The customer knows the relations be-
tween the problem and the solution and states
the specific options. This language is defined
technical language. The salesman chooses those
options. In the kitchen-case the customer can
realize that his situation demands for quickly
warmed up meals and that a microwave combina-
tion oven is best suited to do this. He tells the
salesman that the kitchen must have such an
oven. The salesman chooses the option "micro-
wave combination oven" of the feature "oven".

The three different languages can be consid-
ered as three levels of knowledge of the cus-
tomer. The more knowledge the customer has of
the product, the more he will state his require-
ments in terms of technical language and the less
the salesman has to translate. As a rule a combi-
nation of the three languages is used. The reason
for this is that not all features have the same
technical complexity. For instance, the feature
"dishwasher" is part of the technical language in
specifying a kitchen. Most customers, however,
will state this requirement as-is. This however is
not the case for the capacity of the extractor in
relation to the amount of air which must be
refreshed per minute. For this reason it is not
possible to let the customer just point out the
required options.

During the process of selling a product, com-
munication is possible at different levels of lan-

4 Knowledge Engineering ~ omputers in Industry

guage. An SSIS must be able to handle this. This
is especially important because of the fact that it
might annoy the user to have a dialogue at a too
low level of knowledge.

The rest of this paper is concerned with speci-
fying a product using the technical language. The
next chapter will describe the problems of specifi-
cation using technical language.

3. Problems of specifying in technical language

The ultimate goal of the specification process
is to obtain a valid product specification. The
implementat ion of this process can occur in two
different ways [2]:

(i) The user specifies a product and the com-
plete specification is checked on validity. When it
turns out that the specification is not valid, then
the user must adapt the specification. This new
specification must be checked again on validity.
Eventually this will yield a valid specification.

(ii) The user specifies the product in an inter-
active way. The system guarantees the validity of
the complete specification. To put it another way:
the system guides the process of specification in
such a way that in the end it is impossible to have
a non-valid specification.

We will elaborate the second way of specify-
ing. This way of specifying a product is much
more efficient than the first one. It would not be
realistic to make a complete specification only to
discover that somewhere during the process a
mistake has been made.

We will first introduce some terminology to
describe the process of specification. The degrees
of freedom of a feature X are the options which
are (still) allowed to choose for the feature X. A
feature with only one degree of f reedom is called
a definite feature. A feature with more than one
degree of f reedom is called an indefinite feature.
A selection step consists of making an arbitrary
indefinite feature definite. The specification pro-
cess consists of a sequence of selection steps
which transforms a situation in which all features
are indefinite into a situation in which all fea-
tures are definite.

After each selection step the number of indefi-
nite features decreases with at least one and
therefore the number of definite features is in-
creased with the same number. It is possible that
with one selection step more than one features
are determined due to restrictions between op-
tions. Consider the example in Fig. 2.

In the figure a square represents a degree of
f reedom for a feature. The complete specification

before choice

definite
features

A B C

indefinite
features

D E F

definite
features I ~

A B C D E I F

G ... N

indefinite
features

G ... N

alter choice

restrictions

1. IF D(d2) THEN NOT E(e2)
2. IF A(al) AND D(d2) THEN NOT G(g4)
3. IF E(el) THEN NOT G(gl)
4. IF N(n2) THEN G(g4)

Fig. 2. Se lec t ion s t ep in t he spec i f i ca t ion p rocess .

Computers in Industry MJ. Euwe, R. ~ Schuwer / Configuration of complex products 5

consists of N features. Features A, B, and C are
already definite. The user wants to make feature
D definite and chooses option d2. This choice
results in feature E to be implicitly definite too
(because of restriction 1). Another result of the
choice of d2 is the change in the number of
degrees of freedoms for other indefinite features.
In the example this applies to features G and N.
Consider in particular the repercussions of re-
strictions 2 and 4. Because of the choice of d2
restriction 2 is applied. This results in the exclu-
sion of option g4. Restriction 4 is equivalent to
" IF NOT G(g4) T H E N NOT N(n2)". Because of
this chain reaction eventually option n2 is also
excluded.

During the specification process two complica-
tions can occur:
(i) the problem of a total exclusion;

(ii) the problem of an excluded option which is
required by the customer.

We will go deeper into these two problems.

3.1. The problem o f a total exclusion

It must be guaranteed that the user will never
get stuck during the process. This is the situation
where the user has to modify choices that were
made in previous selection steps, because other-
wise it is not possible to obtain a valid product in
the end. An example of this situation is illus-
trated in Fig. 3.

In this example it is assumed that feature A
has the options al and a2; feature B has the
options bl , b2 and b3; feature C has the options
cl and c2. Due to restriction 1 option cl is not
allowed anymore because of the choice of al .
Due to restriction 2 option c2 is not allowed
anymore because of the choice of b2. Feature C
now has zero degrees of freedom. At least one of
the choices for feature A or B must be changed.

Options

Features

A B C

b3

Restrictions

1. IF A(al) THEN NOT C(cl)

2. IF B(b2) THEN NOT C(c2)

Fig. 3. A total exclusion.

al i~ b2

A B C

definrte features
D
feature

to

spec~

E F N
indefinite features

Fig. 4. Determinat ion of allowed options.

NOT

allowed

allowed

allowed

These undesirable situations are called total

exclusions and can be characterised by the exis-
tence of one or more features with zero degrees
of freedom. To prevent this situation the user
should only be allowed to choose for options bl
and b3 for feature B when he has chosen a l.

The algorithm that guides the specification
process should rule out situations in which a
feature has zero degrees of freedom. This can be
transformed to the demand that the algorithm
should only allow the choice of those options that
will not lead to a total exclusion. The system
should therefore distinguish between allowed op-
tions (not leading to a total exclusion) and non-al-
lowed options (leading to a total exclusion). An
algorithm to decide which options are allowed is
the following:

Let X be the feature to specify in the next
selection step. Let x t , . . . , x~ be the options
for feature X. Let O denote the set of options
that are already chosen. For each option x i let
O i be the union of O and the set {xi}. Decide
if there exists a valid specification, starting
with the set O~ (for each i). If such a specifica-
tion exists, then xi is allowed, else x i is not
allowed.

In plain English: if a variant exists that contains
the current specification and option x i then op-
tion x i is allowed.

Figure 4 illustrates this algorithm. In this fig-
ure, the product consists of the features A up to
and including N. Features A, B, and C are al-
ready determined. The user wants to specify lea-

6 Knowledge Engineering ~/omputers in Industo'

ture D. It must be determined whether dl, d2
and d3 are allowed. With options dl and d2 a
valid specification can be made with certain
choices for features E to N. This has been sym-
bolical denoted with the arrows. Therefore, op-
tions dl and d2 are allowed. With option d3 such
a valid specification cannot be found, so d3 is not
allowed and will not be shown to the user.

In the remainder of this paper, the set O of
already determined options will be called the
current specification.

3.2. The problem of an excluded option which is
required by the customer

In Fig. 2, one can see that a choice for feature
D has consequences for the degrees of freedom
for features G and N. In general, the user does
not know the effect of his choice on other fea-
tures. For instance, it is possible that the user,
when specifying feature N, notices that the pre-
ferred option has already been excluded due to
the choice at feature D. The user may find that
his choice at feature D is more important and
therefore just accept the situation. However, if
the user finds the excluded option at feature N
more important than the choice at feature D,
then he has to modify his previously made choice.

The necessity of altering a previously made
choice can cause a chain reaction of changes in
the specification. Therefore, it is necessary to
avoid those situations as much as possible. This
problem could be tackled by showing the user the
consequences of his choices in terms of excluded
options. When, for example, the user is con-
fronted with the exclusion of options for feature
N resulting from his choice for feature D, then he
can decide to first determine feature N, before
determining feature D. The order in which the
features are determined does in fact reflect the
preferences of the user for the different options.
The user must realize this, because otherwise he
will be confronted with the problems mentioned
before.

Showing the consequences of a selection step
comes to showing the excluded options that are
the result of the selection step. In the example of
Fig. 2 two options for feature G and one option
for feature N are shown to the user. A simple
algorithm to determine which options are ex-

option

knowledge

oomain knowledge

g e n e r i c

product specification language i
i

specifying tnto technical language

process knowledge

Fig. 5. Model of a sales support information system (SSIS).

cluded because of a selection step is the follow-
ing:

Determine the set of allowed options for all
features which have not been determined yet.
Compare this set with the set of allowed op-
tions before the selection step. The difference
of these sets is the set of the excluded options
because of the selection step.

4. Design

A model of the design of an SSIS for the
specification of a product into technical language
is presented in Fig. 5. The SSIS will be consid-
ered a knowledge base system. This is a computer
program in which as good as possible a separa-
tion has been made between the application-in-
dependent inference rules and the application-
specific knowledge [3]. This last type of knowl-
edge is implemented into a knowledge base (i.e. a
database and a rulebase). This explains the name
"knowledge base system".

The border between application-independent
and application-specific is determined by the
product where the system is used for. The appli-
cation-independent inference rules contain the
knowledge that is always used in the specification
of a product (e.g., the algorithm for the determi-
nation of allowed options). This type of knowl-
edge is called process knowledge. ~ Application-
specific knowledge is the knowledge about the
specific type of product for which a specification
has to be found (e.g., the exclusions). This type of
knowledge is called domain knowledge [4].

Computers in Industry M.,L Euwe, R. I~: Schuwer / Configuration of complex product~ 7

Separating these two types of knowledge has
the advantage that changes in the domain-knowl-
edge module can be processed into the system
without affecting the process-knowledge module.
This demand is important when changes to the
product occur often. Such changes can be caused
by marketing considerations or engineering
changes. Another advantage of separating the
types of knowledge is the possibility to use the
same process knowledge for different sets of do-
main knowledge. When, for example, a domain-
knowledge module for kitchens is replaced by a
domain-knowledge module for X-ray apparatus,
then it is possible to configure X-ray apparatus
without any changes to the system.

This modular approach also gives the possibil-
ity to work with so-called local catalogs. A local
catalog contains the (sub)set of features and op-
tions which are locally offered (mostly deter-
~nined by the country where the system is used).
Fhis is valuable when restrictions to the products
:lepend on the country where the product is sold.

In the system a number of modules can be
:listinguished. We will take a closer look into
those modules.

4.1. Domain-knowledge

undefinite feature to make it definite. The system
then calculates which options are still possible for
the not-yet-determined features. Exclusions are
shown to the user, who accepts or modifies his
choice. After making a choice the user selects a
new feature to determine. This is repeated until a
complete, valid specification is made. Because of
the algorithms used, it is guaranteed that this
process ends. The Appendix gives an elaborated
example for a part of this process.

5. The prototype

The prototype system is implemented on an
IBM P S /2 model 50 with the programming lan-
guage LPA-Prolog. This Prolog implementation is
according to the Edinburgh syntax. The choice
for Prolog is made because of its suitability for
the realisation of a knowledge base system.

With the prototype flexible specification is
possible. By using the algorithms mentioned be-
fore, it is guaranteed that the process always
leads to a valid specification and that the process
does not get stuck.

Building and using the prototype gave a clearer
insight into several aspects:

Generic product specifications. The contents of
a generic product specification has been de-
scribed in Section 1.

Option knowledge. This module contains all
relevant data for each option (e.g., "price",
"name", " id#") .

Language. When the system is to be used in
several countries, the aspects which depend on
the language are included in this module. This
gives the possibility to easily exchange this mod-
ule when the system is transferred to another
country. The module contains messages that ap-
pear on the screen or the printer.

4.2. Process knowledge

Specifying to technical language. This module
contains the necessary algorithms that control the
specification process.

The specification process can be described as
follows: The system permits the user to make
selection steps in any order. In the remainder this
is called flexible specification. The user selects an

5.1. Flexible specification

Until now it has been assumed that the system
only contains one generic product specification,
which itself contains a lot of variants. In practice,
however, a product family will often be described
by more than just one generic product specifica-
tion. For instance in the case of kitchens, product
specifications exists for all different manufactur-
ers, i.e. Miele, SieMatic, Bruynzeel, etc. It may be
obvious that the total number of variants is the
sum of the number of variants within the differ-
ent generic product specifications. Intuitively it is
clear that a large number of variants asks for
more processing effort from the system than a
small number of variants. Therefore the first steps
within the specification process should concen-
trate on features that decrease the number of
variants considerably. (Most of the time these
features will decrease the number of generic
product specifications that are still valid.) This
means that flexible specification should initially
be limited to those types of features. When these

8 Knowledge Engineering (i'omputers m Industry

features are specified, the remaining features can
be specified in the same flexible manner. So a
hierarchy in the specification process exists in a
situation with a high number of variants.

5.2. Show consequences o f a selection step

After making a selection step, the options ex-
cluded by that selection are shown to the user.
Exclusion of an option can have two causes:
(i) The option forms part of a generic product

specification that is not relevant anymore: the
product specification cannot be chosen be-
cause of the selection step.

(ii) Because of the selection step a restriction
causes the exclusion of the option.

The prototype shows both types of excluded op-
tions. Showing the first type of options can lead
to a great number of data on the screen. This is
especially true at the beginning of the specifica-
tion process when each selection step may result
in the exclusion of one or more generic product
specifications. Referring to the remarks in Sec-
tion 5.1, the system should initially only show
excluded options of the set of features that is
used to discriminate between product specifica-
tions. When this set of features is determined the
system should show the other exclusions.

5.3. Response times

The calculation of the consequences of a selec-
tion step may take a long time. In the current
prototype, an extreme case may take five min-
utes. This is due to the fact that determining the
set of allowed options is done in an inefficient
manner. The following algorithm speeds up the
calculation:

Partition the set of features in a number of
subsets, using the following criterion:

Two features are element of the same sub-
set if and only if they are a part of the same
restriction.

With this criterion, features that are not part
of a restriction form a subset with only one
element. As was mentioned before, an option
x is allowed if there exists a valid specification
starting with the union of the current specifi-
cation and the set containing x. With the

partitioning of the set of options, this demand
can be replaced by the following demand:

For each subset, there must exist a valid
subspecification, i.e. a specification satisfy-
ing all restrictions that are influenced by the
features in the subset. When such valid sub-
specifications exist for all subsets, they can
simply be combined into one specification.
This specification is valid because no re-
strictions apply to two elements of different
subsets. (This was the criterion on which the
subsets were based.)

Determining a valid specification can there-
fore be replaced by the determination of valid
subspecifications. It is however possible lo
sharpen the last algorithm:

In the last selection step it is guaranteed that a
valid specification can be obtained. This means
that valid subspecifications exist for all subsets.
Therefore, in determining whether or not an
option is valid, it is sufficient to only look for a
valid subspecification for the subset in which
the feature is contained.

Using this algorithm in the prototype should defi-
nitely reduce the response times.

6. Conclusions

The goal of this research was to test the feasi-
bility of a sales-support information system.
Building a prototype of such a system showed
that it is indeed possible to develop a computer
program that:

(i) supports flexible specification of a product in
an interactive way;

(ii) shows the consequences of each choice;
(iii) guarantees the validity of the resulting prod-

uct specification;
(iv) guarantees that the specification process does

not get stuck.

References

[l] E.A. van Veen and J.C. Wortmann, "Generic bills ot
material in assemble-to-order manufacturing", Int. J. Prod.
Res., Vol. 25. No. 11, 1987, pp. 1645.-1658.

Computers in Industry MJ. Euwe, R. IA Schuwer / Configuration of complex products 9

[2] E. van Veen, Modelling Product Structures by Generic
Bills-of-Material, (Thesis, Eindhoven University of Tech-
nology, 1991), Elsevier, Amsterdam, 1992.

[3] N. Mars, "Onderzoek van niveau: Kennistechnologie in
wording", (High-level research: The growth of knowledge
technology), Informatie, Vol. 30, No. 2, 1988, pp. 84-90
(in Dutch).

[4] M.A.W. Theunissen, Kennis over kennis, (Knowledge
about knowledge), Thesis, Hogeschool Eindhoven, 1987
(in Dutch).

Appendix

This appendix gives an example of a dialogue
between a user and the SSIS. We hope that this
will give a better notion of the ideas of this paper.
Therefore, we will not specify the technical user-
interface details (such as the use of pull-down
menus, windowing techniques, use of a mouse,
layout of the screen etc.).
The product consists of the following features
and options: feature A with options al , a2; fea-
ture B with options b l - b 3 , feature C with options
c l - c5 ; and feature D with options dl , d2. Figure
A.1 gives a schematic overview of the product in
the style of Fig. 2.

The following restrictions apply to the prod-
uct:

1 IF A(al) T H E N C(cl)
2 IF A(a2) A N D B(b2) T H E N NOT C(c3)
3 IF C(c2) T H E N NOT B(b2)
4 IF B(b2) T H E N D(dl)

Definite

features

A

Indefinite

features

b3

b2

bl

B

e4

c3

e2

el

d2

D

Fig. A.1. Situation at the start of the specification process.

A

Definite

features

c5

c4

b3 c3

b2 c2

bl

B C

Indefinite

featu re s

Fig. A.2. Situation after specifying feature A.

D

The following notations are used:
[text] denotes considerations of the user or calcu-

lations of the system;
denotes the input by the user or the mes-
sages of the system to the user;

()denotes a description of the input by the
user or of the messages of the system to the
user;

S system;
U user.
After each choice, confirmed by the user, a figure
will give an overview of the definite and indefi-
nite features with the allowed options.

The following dialogue can take place:

S
U
S
U
S

U [considers
option c2
al nor a2]
-~ (selects

--* Feature to specify: ABCD
-~ (selects feature A to specify)
--* Options to choose from: al a2
--* (selects option a l)

[calculates the options that become non-al-
lowed because of the choice of a l. Restriction
1 gives: cl is obliged. Therefore, the other
options for feature C are not allowed.]
--* Not allowed because of your choice:

Feature C, option c2
Feature C, option c3
Feature C, option c4
Feature C, option c5
Feature C definite, option cl

that he has some preference for
and has no preference for neither

option a2)

10 Knowledge Engineering ~ omputers in lndusto

S [No restrictions can be found that results in
non-allowed options because of this choice.
The choice is confirmed by the system, so the
set of definite features is extended. Eventu-
ally somewhere on the screen an overview of
the choices is placed. Figure A.2 gives an
overview of the current situation]

S -~ Feature to specify: BCD
U ~ (selects feature B to specify)
S ~ Options to choose from: bl b2 b3
U --* (selects option b2)
S [Restriction 2 gives: c3 is not allowed. The

reverse of restriction 3 gives: c2 is not al-
lowed. Restriction 4 gives: dl is obliged, so d2
is not allowed.]
-~ Not allowed because of your choice:

Feature C, option c2
Feature C, option c3
Feature D, option d2
Feature D definite, option dl

A

Definite

features

!
J F - - - - - -

I i c5
i

[. • i

B D C

Indefinite

features

Fig. A.3. Situation after specifying feature B.

A B D

Definite

features

ci i
i

i

I
Indefinite

features

Fig. A.4. Final situation,

U [considers, that he has a greater preference
for b2 than for c2, c3, and d2, so he accepts
the exclusion of c2, c3, and d2.]

(confirms his choice for option b2)
S [Extends the set of definite features with fea-

tures B and D and decreases the allowed
options for the indefinite feature C. Figure
A.3 gives an overview of the current situation.]
-~ Feature D has also become definite (op-
tion dl).

S -~ Feature to specify: C
U ~ (selects feature C to specify)
S -~ Options to choose from: cl c4 c5
U --~(selects option cl)
S [No restrictions can be found that results in

non-allowed options because of this choice.
The choice is confirmed by the system, so the
set of definite features is extended. Because
there are no indefinite features left, the pro-
cess is finished. Figure A.4 gives an overview
of the final situation.]
--~ Thank you for your order!

